skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tucker-Drob, Robin D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A long-standing open problem in the theory of hyperfinite equivalence relations asks if the orbit equivalence relation generated by a Borel action of a countable amenable group is hyperfinite. In this paper we prove that this question always has a positive answer when the acting group is polycyclic, and we obtain a positive answer for all free actions of a large class of solvable groups including the Baumslag–Solitar group BS(1, 2) and the lamplighter group Z2 ≀ Z. This marks the first time that a group of exponential volume-growth has been verified to have this property. In obtaining this result we introduce a new tool for studying Borel equivalence relations by extending Gromov’s notion of asymptotic dimension to the Borel setting. We show that countable Borel equivalence relations of finite Borel asymptotic dimension are hyperfinite, and more generally we prove under a mild compatibility assumption that increasing unions of such equivalence relations are hyperfinite. As part of our main theorem, we prove for a large class of solvable groups that all of their free Borel actions have finite Borel asymptotic dimension (and finite dynamic asymptotic dimension in the case of a continuous action on a zero dimensional space). We also provide applications to Borel chromatic numbers, Borel and continuous Følner tilings, topological dynamics, and C∗-algebras. 
    more » « less